The Dirichlet-Bohr radius
Daniel Carando ; Andreas Defant ; Domingo A. Garcí ; Manuel Maestre ; Pablo Sevilla-Peris
Acta Arithmetica, Tome 168 (2015), p. 23-37 / Harvested from The Polish Digital Mathematics Library

Denote by Ω(n) the number of prime divisors of n ∈ ℕ (counted with multiplicities). For x∈ ℕ define the Dirichlet-Bohr radius L(x) to be the best r > 0 such that for every finite Dirichlet polynomial nxann-s we have nx|an|rΩ(n)supt|nxann-it|. We prove that the asymptotically correct order of L(x) is (logx)1/4x-1/8. Following Bohr’s vision our proof links the estimation of L(x) with classical Bohr radii for holomorphic functions in several variables. Moreover, we suggest a general setting which allows translating various results on Bohr radii in a systematic way into results on Dirichlet-Bohr radii, and vice versa.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:279056
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-1-3,
     author = {Daniel Carando and Andreas Defant and Domingo A. Garc\'\i\ and Manuel Maestre and Pablo Sevilla-Peris},
     title = {The Dirichlet-Bohr radius},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {23-37},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-1-3}
}
Daniel Carando; Andreas Defant; Domingo A. Garcí; Manuel Maestre; Pablo Sevilla-Peris. The Dirichlet-Bohr radius. Acta Arithmetica, Tome 168 (2015) pp. 23-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa171-1-3/