Fonctions digitales le long des nombres premiers
Bruno Martin ; Christian Mauduit ; Joël Rivat
Acta Arithmetica, Tome 168 (2015), p. 175-197 / Harvested from The Polish Digital Mathematics Library

In a recent work we gave some estimations for exponential sums of the form nxΛ(n)exp(2iπ(f(n)+βn)), where Λ denotes the von Mangoldt function, f a digital function, and β a real parameter. The aim of this work is to show how these results can be used to study the statistical properties of digital functions along prime numbers.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:279515
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa170-2-5,
     author = {Bruno Martin and Christian Mauduit and Jo\"el Rivat},
     title = {Fonctions digitales le long des nombres premiers},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {175-197},
     zbl = {06471888},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa170-2-5}
}
Bruno Martin; Christian Mauduit; Joël Rivat. Fonctions digitales le long des nombres premiers. Acta Arithmetica, Tome 168 (2015) pp. 175-197. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa170-2-5/