Relative Bogomolov extensions
Robert Grizzard
Acta Arithmetica, Tome 168 (2015), p. 1-13 / Harvested from The Polish Digital Mathematics Library

A subfield K ⊆ ℚ̅ has the Bogomolov property if there exists a positive ε such that no non-torsion point of K× has absolute logarithmic height below ε. We define a relative extension L/K to be Bogomolov if this holds for points of L×K×. We construct various examples of extensions which are and are not Bogomolov. We prove a ramification criterion for this property, and use it to show that such extensions can always be constructed if some rational prime has bounded ramification index in K.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:286067
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa170-1-1,
     author = {Robert Grizzard},
     title = {Relative Bogomolov extensions},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {1-13},
     zbl = {06459954},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa170-1-1}
}
Robert Grizzard. Relative Bogomolov extensions. Acta Arithmetica, Tome 168 (2015) pp. 1-13. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa170-1-1/