Stabilization in non-abelian Iwasawa theory
Andrea Bandini ; Fabio Caldarola
Acta Arithmetica, Tome 168 (2015), p. 319-329 / Harvested from The Polish Digital Mathematics Library

Let K/k be a ℤₚ-extension of a number field k, and denote by kₙ its layers. We prove some stabilization properties for the orders and the p-ranks of the higher Iwasawa modules arising from the lower central series of the Galois group of the maximal unramified pro-p-extension of K (resp. of the kₙ).

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:279310
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa169-4-2,
     author = {Andrea Bandini and Fabio Caldarola},
     title = {Stabilization in non-abelian Iwasawa theory},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {319-329},
     zbl = {1331.11098},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa169-4-2}
}
Andrea Bandini; Fabio Caldarola. Stabilization in non-abelian Iwasawa theory. Acta Arithmetica, Tome 168 (2015) pp. 319-329. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa169-4-2/