Primality test for numbers of the form (2p)2n+1
Yingpu Deng ; Dandan Huang
Acta Arithmetica, Tome 168 (2015), p. 301-317 / Harvested from The Polish Digital Mathematics Library

We describe a primality test for M=(2p)2n+1 with an odd prime p and a positive integer n, which are a particular type of generalized Fermat numbers. We also present special primality criteria for all odd prime numbers p not exceeding 19. All these primality tests run in deterministic polynomial time in the input size log₂M. A special 2pth power reciprocity law is used to deduce our result.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:278951
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa169-4-1,
     author = {Yingpu Deng and Dandan Huang},
     title = {Primality test for numbers of the form $(2p)^{2^n}+1$
            },
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {301-317},
     zbl = {06456774},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa169-4-1}
}
Yingpu Deng; Dandan Huang. Primality test for numbers of the form $(2p)^{2^n}+1$
            . Acta Arithmetica, Tome 168 (2015) pp. 301-317. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa169-4-1/