We investigate real values of the Riemann zeta function on the critical line. We show that if Gram's points do not intersect with the ordinates of the nontrivial zeros of the Riemann zeta function then the Riemann zeta function takes arbitrarily small real values on the critical line.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa169-3-1, author = {Justas Kalpokas and Paulius \v Sarka}, title = {Small values of the Riemann zeta function on the critical line}, journal = {Acta Arithmetica}, volume = {168}, year = {2015}, pages = {201-220}, zbl = {06451618}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa169-3-1} }
Justas Kalpokas; Paulius Šarka. Small values of the Riemann zeta function on the critical line. Acta Arithmetica, Tome 168 (2015) pp. 201-220. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa169-3-1/