Coefficient bounds for level 2 cusp forms
Paul Jenkins ; Kyle Pratt
Acta Arithmetica, Tome 168 (2015), p. 341-367 / Harvested from The Polish Digital Mathematics Library

We give explicit upper bounds for the coefficients of arbitrary weight k, level 2 cusp forms, making Deligne’s well-known O(n(k-1)/2+ϵ) bound precise. We also derive asymptotic formulas and explicit upper bounds for the coefficients of certain level 2 modular functions.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:286269
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-4-2,
     author = {Paul Jenkins and Kyle Pratt},
     title = {Coefficient bounds for level 2 cusp forms},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {341-367},
     zbl = {06438363},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-4-2}
}
Paul Jenkins; Kyle Pratt. Coefficient bounds for level 2 cusp forms. Acta Arithmetica, Tome 168 (2015) pp. 341-367. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-4-2/