On certain infinite families of imaginary quadratic fields whose Iwasawa λ-invariant is equal to 1
Akiko Ito
Acta Arithmetica, Tome 168 (2015), p. 301-339 / Harvested from The Polish Digital Mathematics Library

Let p be an odd prime number. We prove the existence of certain infinite families of imaginary quadratic fields in which p splits and for which the Iwasawa λ-invariant of the cyclotomic ℤₚ-extension is equal to 1.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:279794
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-4-1,
     author = {Akiko Ito},
     title = {On certain infinite families of imaginary quadratic fields whose Iwasawa $\lambda$-invariant is equal to 1},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {301-339},
     zbl = {06438362},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-4-1}
}
Akiko Ito. On certain infinite families of imaginary quadratic fields whose Iwasawa λ-invariant is equal to 1. Acta Arithmetica, Tome 168 (2015) pp. 301-339. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-4-1/