Let p be an odd prime number. We prove the existence of certain infinite families of imaginary quadratic fields in which p splits and for which the Iwasawa λ-invariant of the cyclotomic ℤₚ-extension is equal to 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-4-1, author = {Akiko Ito}, title = {On certain infinite families of imaginary quadratic fields whose Iwasawa $\lambda$-invariant is equal to 1}, journal = {Acta Arithmetica}, volume = {168}, year = {2015}, pages = {301-339}, zbl = {06438362}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-4-1} }
Akiko Ito. On certain infinite families of imaginary quadratic fields whose Iwasawa λ-invariant is equal to 1. Acta Arithmetica, Tome 168 (2015) pp. 301-339. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-4-1/