Explicit algebraic dependence formulae for infinite products related with Fibonacci and Lucas numbers
Hajime Kaneko ; Takeshi Kurosawa ; Yohei Tachiya ; Taka-aki Tanaka
Acta Arithmetica, Tome 168 (2015), p. 161-186 / Harvested from The Polish Digital Mathematics Library

Let d ≥ 2 be an integer. In 2010, the second, third, and fourth authors gave necessary and sufficient conditions for the infinite products k=1Udk-ai(1+(ai)/(Udk)) (i=1,...,m) or k=1Vdk-ai(1+(ai)(Vdk) (i=1,...,m) to be algebraically dependent, where ai are non-zero integers and Un and Vn are generalized Fibonacci numbers and Lucas numbers, respectively. The purpose of this paper is to relax the condition on the non-zero integers a1,...,am to non-zero real algebraic numbers, which gives new cases where the infinite products above are algebraically dependent.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:279621
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-2-5,
     author = {Hajime Kaneko and Takeshi Kurosawa and Yohei Tachiya and Taka-aki Tanaka},
     title = {Explicit algebraic dependence formulae for infinite products related with Fibonacci and Lucas numbers},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {161-186},
     zbl = {1331.11057},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-2-5}
}
Hajime Kaneko; Takeshi Kurosawa; Yohei Tachiya; Taka-aki Tanaka. Explicit algebraic dependence formulae for infinite products related with Fibonacci and Lucas numbers. Acta Arithmetica, Tome 168 (2015) pp. 161-186. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-2-5/