Let d be a positive integer and α a real algebraic number of degree d + 1. Set . It is well-known that , where ||·|| denotes the distance to the nearest integer. Furthermore, for any integer n ≥ 1. Our main result asserts that there exists a real number C, depending only on α, such that for any integer n ≥ 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-1-4, author = {Yann Bugeaud}, title = {On the multiples of a badly approximable vector}, journal = {Acta Arithmetica}, volume = {168}, year = {2015}, pages = {71-81}, zbl = {1325.11062}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-1-4} }
Yann Bugeaud. On the multiples of a badly approximable vector. Acta Arithmetica, Tome 168 (2015) pp. 71-81. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-1-4/