On the multiples of a badly approximable vector
Yann Bugeaud
Acta Arithmetica, Tome 168 (2015), p. 71-81 / Harvested from The Polish Digital Mathematics Library

Let d be a positive integer and α a real algebraic number of degree d + 1. Set α̲:=(α,α²,...,αd). It is well-known that c(α̲):=liminfqq1/d·||qα̲||>0, where ||·|| denotes the distance to the nearest integer. Furthermore, c(α̲)n-1/dc(nα̲)nc(α̲) for any integer n ≥ 1. Our main result asserts that there exists a real number C, depending only on α, such that c(nα̲)Cn-1/d for any integer n ≥ 1.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:286164
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-1-4,
     author = {Yann Bugeaud},
     title = {On the multiples of a badly approximable vector},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {71-81},
     zbl = {1325.11062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-1-4}
}
Yann Bugeaud. On the multiples of a badly approximable vector. Acta Arithmetica, Tome 168 (2015) pp. 71-81. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-1-4/