Generators and integral points on twists of the Fermat cubic
Yasutsugu Fujita ; Tadahisa Nara
Acta Arithmetica, Tome 168 (2015), p. 1-16 / Harvested from The Polish Digital Mathematics Library

We study integral points and generators on cubic twists of the Fermat cubic curve. The main results assert that integral points can be in a system of generators in the case where the Mordell-Weil rank is at most two. As a corollary, we explicitly describe the integral points on the curve.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:278923
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-1-1,
     author = {Yasutsugu Fujita and Tadahisa Nara},
     title = {Generators and integral points on twists of the Fermat cubic},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {1-16},
     zbl = {06422679},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-1-1}
}
Yasutsugu Fujita; Tadahisa Nara. Generators and integral points on twists of the Fermat cubic. Acta Arithmetica, Tome 168 (2015) pp. 1-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-1-1/