Congruences of Ankeny-Artin-Chowla type and the p-adic class number formula revisited
František Marko
Acta Arithmetica, Tome 168 (2015), p. 281-298 / Harvested from The Polish Digital Mathematics Library

The purpose of this paper is to interpret the results of Jakubec and his collaborators on congruences of Ankeny-Artin-Chowla type for cyclic totally real fields as an elementary algebraic version of the p-adic class number formula modulo powers of p. We show how to generalize the previous results to congruences modulo arbitrary powers pt and to equalities in the p-adic completion p of the field of rational numbers ℚ. Additional connections to the Gross-Koblitz formula and explicit congruences for quadratic and cubic fields are given.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:278855
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa167-3-6,
     author = {Franti\v sek Marko},
     title = {Congruences of Ankeny-Artin-Chowla type and the p-adic class number formula revisited},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {281-298},
     zbl = {1317.11111},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa167-3-6}
}
František Marko. Congruences of Ankeny-Artin-Chowla type and the p-adic class number formula revisited. Acta Arithmetica, Tome 168 (2015) pp. 281-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa167-3-6/