On arithmetic progressions on Edwards curves
Enrique González-Jiménez
Acta Arithmetica, Tome 168 (2015), p. 117-132 / Harvested from The Polish Digital Mathematics Library

Let m>0 and a,q ∈ ℚ. Denote by m(a,q) the set of rational numbers d such that a, a + q, ..., a + (m-1)q form an arithmetic progression in the Edwards curve Ed:x²+y²=1+dx²y². We study the set m(a,q) and we parametrize it by the rational points of an algebraic curve.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:279397
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa167-2-2,
     author = {Enrique Gonz\'alez-Jim\'enez},
     title = {On arithmetic progressions on Edwards curves},
     journal = {Acta Arithmetica},
     volume = {168},
     year = {2015},
     pages = {117-132},
     zbl = {1322.11057},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa167-2-2}
}
Enrique González-Jiménez. On arithmetic progressions on Edwards curves. Acta Arithmetica, Tome 168 (2015) pp. 117-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa167-2-2/