We prove an upper bound for the number of primes p ≤ x in an arithmetic progression 1 (mod Q) that are exceptional in the sense that has no generator in the interval [1,B]. As a consequence we prove that if with a sufficiently large absolute constant c, then there exists a prime q dividing Q such that for some positive integer b ≤ B. Moreover we estimate the number of such q’s under suitable conditions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-4-5, author = {Jacek Pomyka\l a}, title = {On q-orders in primitive modular groups}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {397-404}, zbl = {1320.11101}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-4-5} }
Jacek Pomykała. On q-orders in primitive modular groups. Acta Arithmetica, Tome 166 (2014) pp. 397-404. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-4-5/