On q-orders in primitive modular groups
Jacek Pomykała
Acta Arithmetica, Tome 166 (2014), p. 397-404 / Harvested from The Polish Digital Mathematics Library

We prove an upper bound for the number of primes p ≤ x in an arithmetic progression 1 (mod Q) that are exceptional in the sense that *p has no generator in the interval [1,B]. As a consequence we prove that if Q>exp[c(logp)/(logB)(loglogp)] with a sufficiently large absolute constant c, then there exists a prime q dividing Q such that νq(ordpb)=νq(p-1) for some positive integer b ≤ B. Moreover we estimate the number of such q’s under suitable conditions.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279782
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-4-5,
     author = {Jacek Pomyka\l a},
     title = {On q-orders in primitive modular groups},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {397-404},
     zbl = {1320.11101},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-4-5}
}
Jacek Pomykała. On q-orders in primitive modular groups. Acta Arithmetica, Tome 166 (2014) pp. 397-404. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-4-5/