On large values of the Riemann zeta-function on short segments of the critical line
Maxim A. Korolev
Acta Arithmetica, Tome 166 (2014), p. 349-390 / Harvested from The Polish Digital Mathematics Library

We obtain a series of new conditional lower bounds for the modulus and the argument of the Riemann zeta function on very short segments of the critical line, based on the Riemann hypothesis. In particular, we prove that for any large fixed constant A > 1 there exist(non-effective) constants T₀(A) > 0 and c₀(A) > 0 such that the maximum of |ζ (0.5+it)| on the interval (T-h,T+h) is greater than A for any T > T₀ and h = (1/π)lnlnln{T}+c₀.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279175
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-4-3,
     author = {Maxim A. Korolev},
     title = {On large values of the Riemann zeta-function on short segments of the critical line},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {349-390},
     zbl = {06374654},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-4-3}
}
Maxim A. Korolev. On large values of the Riemann zeta-function on short segments of the critical line. Acta Arithmetica, Tome 166 (2014) pp. 349-390. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-4-3/