A note on minimal zero-sum sequences over ℤ
Papa A. Sissokho
Acta Arithmetica, Tome 166 (2014), p. 279-288 / Harvested from The Polish Digital Mathematics Library

A zero-sum sequence over ℤ is a sequence with terms in ℤ that sum to 0. It is called minimal if it does not contain a proper zero-sum subsequence. Consider a minimal zero-sum sequence over ℤ with positive terms a,...,ah and negative terms b,...,bk. We prove that h ≤ ⌊σ⁺/k⌋ and k ≤ ⌊σ⁺/h⌋, where σ=i=1hai=-j=1kbj. These bounds are tight and improve upon previous results. We also show a natural partial order structure on the collection of all minimal zero-sum sequences over the set i∈ ℤ : -n ≤ i ≤ n for any positive integer n.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:286310
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-3-4,
     author = {Papa A. Sissokho},
     title = {A note on minimal zero-sum sequences over $\mathbb{Z}$},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {279-288},
     zbl = {06373521},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-3-4}
}
Papa A. Sissokho. A note on minimal zero-sum sequences over ℤ. Acta Arithmetica, Tome 166 (2014) pp. 279-288. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-3-4/