Determination of a type of permutation trinomials over finite fields
Xiang-dong Hou
Acta Arithmetica, Tome 166 (2014), p. 253-278 / Harvested from The Polish Digital Mathematics Library

Let f=ax+bxq+x2q-1q[x]. We find explicit conditions on a and b that are necessary and sufficient for f to be a permutation polynomial of q². This result allows us to solve a related problem: Let gn,qp[x] (n ≥ 0, p=charq) be the polynomial defined by the functional equation cq(x+c)n=gn,q(xq-x). We determine all n of the form n=qα-qβ-1, α > β ≥ 0, for which gn,q is a permutation polynomial of q².

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279147
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-3-3,
     author = {Xiang-dong Hou},
     title = {Determination of a type of permutation trinomials over finite fields},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {253-278},
     zbl = {06373520},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-3-3}
}
Xiang-dong Hou. Determination of a type of permutation trinomials over finite fields. Acta Arithmetica, Tome 166 (2014) pp. 253-278. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-3-3/