Let . We find explicit conditions on a and b that are necessary and sufficient for f to be a permutation polynomial of . This result allows us to solve a related problem: Let (n ≥ 0, ) be the polynomial defined by the functional equation . We determine all n of the form , α > β ≥ 0, for which is a permutation polynomial of .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-3-3, author = {Xiang-dong Hou}, title = {Determination of a type of permutation trinomials over finite fields}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {253-278}, zbl = {06373520}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-3-3} }
Xiang-dong Hou. Determination of a type of permutation trinomials over finite fields. Acta Arithmetica, Tome 166 (2014) pp. 253-278. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-3-3/