Let . We find explicit conditions on a and b that are necessary and sufficient for f to be a permutation polynomial of . This result allows us to solve a related problem: Let (n ≥ 0, ) be the polynomial defined by the functional equation . We determine all n of the form , α > β ≥ 0, for which is a permutation polynomial of .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-3-3,
author = {Xiang-dong Hou},
title = {Determination of a type of permutation trinomials over finite fields},
journal = {Acta Arithmetica},
volume = {166},
year = {2014},
pages = {253-278},
zbl = {06373520},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-3-3}
}
Xiang-dong Hou. Determination of a type of permutation trinomials over finite fields. Acta Arithmetica, Tome 166 (2014) pp. 253-278. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-3-3/