Given an elliptic curve E over a function field K = ℚ(T₁,...,Tₙ), we study the behavior of the canonical height of the specialized elliptic curve with respect to the height of ω ∈ ℚⁿ. We prove that there exists a uniform nonzero lower bound for the average of the quotient over all nontorsion P ∈ E(K).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-2-1, author = {Wei Pin Wong}, title = {On the average value of the canonical height in higher dimensional families of elliptic curves}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {101-128}, zbl = {1316.11048}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-2-1} }
Wei Pin Wong. On the average value of the canonical height in higher dimensional families of elliptic curves. Acta Arithmetica, Tome 166 (2014) pp. 101-128. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-2-1/