We consider Akatsuka’s zeta Mahler measure as a generating function of the higher Mahler measure of a polynomial where is the integral of over the complex unit circle. Restricting ourselves to P(x) = x - r with |r| = 1 we show some new asymptotic results regarding , in particular as k → ∞.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-1-2, title = {Asymptotic nature of higher Mahler measure}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {15-21}, zbl = {1311.11099}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-1-2} }
(éd.). Asymptotic nature of higher Mahler measure. Acta Arithmetica, Tome 166 (2014) pp. 15-21. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-1-2/