We provide an asymptotic estimate for the number of rational points of bounded height on a non-singular conic over ℚ. The estimate is uniform in the coefficients of the underlying quadratic form.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-1-1, author = {Efthymios Sofos}, title = {Uniformly counting rational points on conics}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {1-13}, zbl = {06360636}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-1-1} }
Efthymios Sofos. Uniformly counting rational points on conics. Acta Arithmetica, Tome 166 (2014) pp. 1-13. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa166-1-1/