For a function field K and fixed polynomial F ∈ K[x] and varying f ∈ F (under certain restrictions) we give a lower bound for the degree of the greatest prime divisor of F(f) in terms of the height of f, establishing a strong result for the function field analogue of a classical problem in number theory.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-4-4, author = {Alexei Entin}, title = {Greatest prime divisors of polynomial values over function fields}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {339-349}, zbl = {1322.11121}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-4-4} }
Alexei Entin. Greatest prime divisors of polynomial values over function fields. Acta Arithmetica, Tome 166 (2014) pp. 339-349. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-4-4/