Greatest prime divisors of polynomial values over function fields
Alexei Entin
Acta Arithmetica, Tome 166 (2014), p. 339-349 / Harvested from The Polish Digital Mathematics Library

For a function field K and fixed polynomial F ∈ K[x] and varying f ∈ F (under certain restrictions) we give a lower bound for the degree of the greatest prime divisor of F(f) in terms of the height of f, establishing a strong result for the function field analogue of a classical problem in number theory.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279494
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-4-4,
     author = {Alexei Entin},
     title = {Greatest prime divisors of polynomial values over function fields},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {339-349},
     zbl = {1322.11121},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-4-4}
}
Alexei Entin. Greatest prime divisors of polynomial values over function fields. Acta Arithmetica, Tome 166 (2014) pp. 339-349. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-4-4/