On the convergence to 0 of mₙξmod 1
Bassam Fayad ; Jean-Paul Thouvenot
Acta Arithmetica, Tome 166 (2014), p. 327-332 / Harvested from The Polish Digital Mathematics Library

We show that for any irrational number α and a sequence mll of integers such that liml|||mlα|||=0, there exists a continuous measure μ on the circle such that liml|||mlθ|||dμ(θ)=0. This implies that any rigidity sequence of any ergodic transformation is a rigidity sequence for some weakly mixing dynamical system. On the other hand, we show that for any α ∈ ℝ - ℚ, there exists a sequence mll of integers such that |||mlα|||0 and such that mlθ[1] is dense on the circle if and only if θ ∉ ℚα + ℚ.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279765
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-4-2,
     author = {Bassam Fayad and Jean-Paul Thouvenot},
     title = {On the convergence to 0 of mnxmod 1},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {327-332},
     zbl = {1310.11079},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-4-2}
}
Bassam Fayad; Jean-Paul Thouvenot. On the convergence to 0 of mₙξmod 1. Acta Arithmetica, Tome 166 (2014) pp. 327-332. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-4-2/