On the class numbers of real cyclotomic fields of conductor pq
Eleni Agathocleous
Acta Arithmetica, Tome 166 (2014), p. 257-277 / Harvested from The Polish Digital Mathematics Library

The class numbers h⁺ of the real cyclotomic fields are very hard to compute. Methods based on discriminant bounds become useless as the conductor of the field grows, and methods employing Leopoldt's decomposition of the class number become hard to use when the field extension is not cyclic of prime power. This is why other methods have been developed, which approach the problem from different angles. In this paper we extend one of these methods that was designed for real cyclotomic fields of prime conductor, and we make it applicable to real cyclotomic fields of conductor equal to the product of two distinct odd primes. The main advantage of this method is that it does not exclude the primes dividing the order of the Galois group, in contrast to other methods. We applied our algorithm to real cyclotomic fields of conductor < 2000 and we calculated the full order of the l-part of h⁺ for all odd primes l < 10000.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:278854
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-3-5,
     author = {Eleni Agathocleous},
     title = {On the class numbers of real cyclotomic fields of conductor pq},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {257-277},
     zbl = {1331.11118},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-3-5}
}
Eleni Agathocleous. On the class numbers of real cyclotomic fields of conductor pq. Acta Arithmetica, Tome 166 (2014) pp. 257-277. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-3-5/