Sparsity of the intersection of polynomial images of an interval
Mei-Chu Chang
Acta Arithmetica, Tome 166 (2014), p. 243-249 / Harvested from The Polish Digital Mathematics Library

We show that the intersection of the images of two polynomial maps on a given interval is sparse. More precisely, we prove the following. Let f(x),g(x)p[x] be polynomials of degrees d and e with d ≥ e ≥ 2. Suppose M ∈ ℤ satisfies p1/E(1+κ/(1-κ)>M>pε, where E = e(e+1)/2 and κ = (1/d - 1/d²) (E-1)/E + ε. Assume f(x)-g(y) is absolutely irreducible. Then |f([0,M])g([0,M])|M1-ε.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279665
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-3-3,
     author = {Mei-Chu Chang},
     title = {Sparsity of the intersection of polynomial images of an interval},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {243-249},
     zbl = {1308.11085},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-3-3}
}
Mei-Chu Chang. Sparsity of the intersection of polynomial images of an interval. Acta Arithmetica, Tome 166 (2014) pp. 243-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-3-3/