We show that the intersection of the images of two polynomial maps on a given interval is sparse. More precisely, we prove the following. Let be polynomials of degrees d and e with d ≥ e ≥ 2. Suppose M ∈ ℤ satisfies , where E = e(e+1)/2 and κ = (1/d - 1/d²) (E-1)/E + ε. Assume f(x)-g(y) is absolutely irreducible. Then .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-3-3, author = {Mei-Chu Chang}, title = {Sparsity of the intersection of polynomial images of an interval}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {243-249}, zbl = {1308.11085}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-3-3} }
Mei-Chu Chang. Sparsity of the intersection of polynomial images of an interval. Acta Arithmetica, Tome 166 (2014) pp. 243-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-3-3/