We give a parametrization of curves C of genus 2 with a maximal isotropic (ℤ/3)² in J[3], where J is the Jacobian variety of C, and develop the theory required to perform descent via (3,3)-isogeny. We apply this to several examples, where it is shown that non-reducible Jacobians have non-trivial 3-part of the Tate-Shafarevich group.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-3-1, author = {Nils Bruin and E. Victor Flynn and Damiano Testa}, title = {Descent via (3,3)-isogeny on Jacobians of genus 2 curves}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {201-223}, zbl = {1311.11052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-3-1} }
Nils Bruin; E. Victor Flynn; Damiano Testa. Descent via (3,3)-isogeny on Jacobians of genus 2 curves. Acta Arithmetica, Tome 166 (2014) pp. 201-223. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-3-1/