We study the Euclidean property for totally indefinite quaternion fields. In particular, we establish a complete list of norm-Euclidean such fields over imaginary quadratic number fields. This enables us to exhibit an example which gives a negative answer to a question asked by Eichler. The proofs are both theoretical and algorithmic.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-2-4, author = {Jean-Paul Cerri and J\'er\^ome Chaubert and Pierre Lezowski}, title = {Totally indefinite Euclidean quaternion fields}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {181-200}, zbl = {1305.16011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-2-4} }
Jean-Paul Cerri; Jérôme Chaubert; Pierre Lezowski. Totally indefinite Euclidean quaternion fields. Acta Arithmetica, Tome 166 (2014) pp. 181-200. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-2-4/