Large gaps between consecutive zeros of the Riemann zeta-function. II
H. M. Bui
Acta Arithmetica, Tome 166 (2014), p. 101-122 / Harvested from The Polish Digital Mathematics Library

Assuming the Riemann Hypothesis we show that there exist infinitely many consecutive zeros of the Riemann zeta-function whose gaps are greater than 2.9 times the average spacing.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279210
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-2-1,
     author = {H. M. Bui},
     title = {Large gaps between consecutive zeros of the Riemann zeta-function. II},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {101-122},
     zbl = {1310.11087},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-2-1}
}
H. M. Bui. Large gaps between consecutive zeros of the Riemann zeta-function. II. Acta Arithmetica, Tome 166 (2014) pp. 101-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-2-1/