Assuming the Riemann Hypothesis we show that there exist infinitely many consecutive zeros of the Riemann zeta-function whose gaps are greater than 2.9 times the average spacing.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-2-1, author = {H. M. Bui}, title = {Large gaps between consecutive zeros of the Riemann zeta-function. II}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {101-122}, zbl = {1310.11087}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-2-1} }
H. M. Bui. Large gaps between consecutive zeros of the Riemann zeta-function. II. Acta Arithmetica, Tome 166 (2014) pp. 101-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-2-1/