Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions
Olivier Ramaré
Acta Arithmetica, Tome 166 (2014), p. 1-10 / Harvested from The Polish Digital Mathematics Library

We prove that |dx,(d,q)=1μ(d)/d|2.4(q/φ(q))/log(x/q) for every x > q ≥ 1, and similar estimates for the Liouville function. We also give better constants when x/q is large.,

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279409
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-1-1,
     author = {Olivier Ramar\'e},
     title = {Explicit estimates on the summatory functions of the M\"obius function with coprimality restrictions},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {1-10},
     zbl = {1316.11087},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-1-1}
}
Olivier Ramaré. Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions. Acta Arithmetica, Tome 166 (2014) pp. 1-10. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa165-1-1/