Bad(s,t) is hyperplane absolute winning
Erez Nesharim ; David Simmons
Acta Arithmetica, Tome 166 (2014), p. 145-152 / Harvested from The Polish Digital Mathematics Library

J. An proved that for any s,t ≥ 0 such that s + t = 1, Bad (s,t) is (34√2)¯¹-winning for Schmidt's game. We show that using the main lemma from [An] one can derive a stronger result, namely that Bad (s,t) is hyperplane absolute winning in the sense of [BFKRW]. As a consequence, one can deduce the full Hausdorff dimension of Bad (s,t) intersected with certain fractals.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:278954
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-2-4,
     author = {Erez Nesharim and David Simmons},
     title = {Bad(s,t) is hyperplane absolute winning},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {145-152},
     zbl = {1315.11057},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-2-4}
}
Erez Nesharim; David Simmons. Bad(s,t) is hyperplane absolute winning. Acta Arithmetica, Tome 166 (2014) pp. 145-152. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-2-4/