Let X be a proper smooth variety having an affine open subset defined by the normic equation over a number field k. We prove that: (1) the failure of the local-global principle for zero-cycles is controlled by the Brauer group of X; (2) the analogue for rational points is also valid assuming Schinzel’s hypothesis.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-2-3, author = {Yang Cao and Yongqi Liang}, title = {Local-global principle for certain biquadratic normic bundles}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {137-144}, zbl = {1323.11046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-2-3} }
Yang Cao; Yongqi Liang. Local-global principle for certain biquadratic normic bundles. Acta Arithmetica, Tome 166 (2014) pp. 137-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-2-3/