Local-global principle for certain biquadratic normic bundles
Yang Cao ; Yongqi Liang
Acta Arithmetica, Tome 166 (2014), p. 137-144 / Harvested from The Polish Digital Mathematics Library

Let X be a proper smooth variety having an affine open subset defined by the normic equation Nk(a,b)/k(x)=Q(t,...,t)² over a number field k. We prove that: (1) the failure of the local-global principle for zero-cycles is controlled by the Brauer group of X; (2) the analogue for rational points is also valid assuming Schinzel’s hypothesis.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:286627
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-2-3,
     author = {Yang Cao and Yongqi Liang},
     title = {Local-global principle for certain biquadratic normic bundles},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {137-144},
     zbl = {1323.11046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-2-3}
}
Yang Cao; Yongqi Liang. Local-global principle for certain biquadratic normic bundles. Acta Arithmetica, Tome 166 (2014) pp. 137-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-2-3/