Let . We prove that for each root of unity there is an a > 0 such that as r → 1-. For roots of unity e(l/q) with q ≤ 100 we prove that these omega-estimates are true with a = 1/2. From omega-estimates for (z) we obtain omega-estimates for some finite sums.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-2-2, author = {Oleg Petrushov}, title = {On the behaviour close to the unit circle of the power series with M\"obius function coefficients}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {119-136}, zbl = {1304.11113}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-2-2} }
Oleg Petrushov. On the behaviour close to the unit circle of the power series with Möbius function coefficients. Acta Arithmetica, Tome 166 (2014) pp. 119-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-2-2/