Complete arcs arising from a generalization of the Hermitian curve
Herivelto Borges ; Beatriz Motta ; Fernando Torres
Acta Arithmetica, Tome 166 (2014), p. 101-118 / Harvested from The Polish Digital Mathematics Library

We investigate complete arcs of degree greater than two, in projective planes over finite fields, arising from the set of rational points of a generalization of the Hermitian curve. The degree of the arcs is closely related to the number of rational points of a class of Artin-Schreier curves, which is calculated by using exponential sums via Coulter's approach. We also single out some examples of maximal curves.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279796
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-2-1,
     author = {Herivelto Borges and Beatriz Motta and Fernando Torres},
     title = {Complete arcs arising from a generalization of the Hermitian curve},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {101-118},
     zbl = {1316.05020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-2-1}
}
Herivelto Borges; Beatriz Motta; Fernando Torres. Complete arcs arising from a generalization of the Hermitian curve. Acta Arithmetica, Tome 166 (2014) pp. 101-118. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-2-1/