A note on the article by F. Luca “On the system of Diophantine equations a²+b²=(m²+1)r and ax+by=(m²+1)z” (Acta Arith. 153 (2012), 373-392)
Takafumi Miyazaki
Acta Arithmetica, Tome 166 (2014), p. 31-42 / Harvested from The Polish Digital Mathematics Library

Let r,m be positive integers with r > 1, m even, and A,B be integers satisfying A+B(-1)=(m+(-1))r. We prove that the Diophantine equation |A|x+|B|y=(m²+1)z has no positive integer solutions in (x,y,z) other than (x,y,z) = (2,2,r), whenever r>1074 or m>1034. Our result is an explicit refinement of a theorem due to F. Luca.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279513
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-1-3,
     author = {Takafumi Miyazaki},
     title = {A note on the article by F. Luca ``On the system of Diophantine equations $a$^2$+b$^2$ = (m$^2$+1)^r$ and $a^{x}+b^y = (m$^2$+1)^z$'' (Acta Arith. 153 (2012), 373-392)},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {31-42},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-1-3}
}
Takafumi Miyazaki. A note on the article by F. Luca “On the system of Diophantine equations $a²+b² = (m²+1)^r$ and $a^{x}+b^y = (m²+1)^z$” (Acta Arith. 153 (2012), 373-392). Acta Arithmetica, Tome 166 (2014) pp. 31-42. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-1-3/