Let r,m be positive integers with r > 1, m even, and A,B be integers satisfying . We prove that the Diophantine equation has no positive integer solutions in (x,y,z) other than (x,y,z) = (2,2,r), whenever or . Our result is an explicit refinement of a theorem due to F. Luca.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-1-3, author = {Takafumi Miyazaki}, title = {A note on the article by F. Luca ``On the system of Diophantine equations $a$^2$+b$^2$ = (m$^2$+1)^r$ and $a^{x}+b^y = (m$^2$+1)^z$'' (Acta Arith. 153 (2012), 373-392)}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {31-42}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-1-3} }
Takafumi Miyazaki. A note on the article by F. Luca “On the system of Diophantine equations $a²+b² = (m²+1)^r$ and $a^{x}+b^y = (m²+1)^z$” (Acta Arith. 153 (2012), 373-392). Acta Arithmetica, Tome 166 (2014) pp. 31-42. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa164-1-3/