Rademacher-Carlitz polynomials
Matthias Beck ; Florian Kohl
Acta Arithmetica, Tome 166 (2014), p. 379-393 / Harvested from The Polish Digital Mathematics Library

We introduce and study the Rademacher-Carlitz polynomial R(u,v,s,t,a,b):=k=ss+b-1u(ka+t)/bvk where a,b>0, s,t ∈ ℝ, and u and v are variables. These polynomials generalize and unify various Dedekind-like sums and polynomials; most naturally, one may view R(u,v,s,t,a,b) as a polynomial analogue (in the sense of Carlitz) of the Dedekind-Rademacher sum rt(a,b):=k=0b-1(((ka+t)/b))((k/b)), which appears in various number-theoretic, combinatorial, geometric, and computational contexts. Our results come in three flavors: we prove a reciprocity theorem for Rademacher-Carlitz polynomials, we show how they are the only nontrivial ingredients of integer-point transforms σ(x,y):=(j,k)²xjyk of any rational polyhedron , and we derive the reciprocity theorem for Dedekind-Rademacher sums as a corollary which follows naturally from our setup.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279109
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-4-6,
     author = {Matthias Beck and Florian Kohl},
     title = {Rademacher-Carlitz polynomials},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {379-393},
     zbl = {1318.11057},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-4-6}
}
Matthias Beck; Florian Kohl. Rademacher-Carlitz polynomials. Acta Arithmetica, Tome 166 (2014) pp. 379-393. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-4-6/