On the equation a³ + b³ⁿ = c²
Michael A. Bennett ; Imin Chen ; Sander R. Dahmen ; Soroosh Yazdani
Acta Arithmetica, Tome 166 (2014), p. 327-343 / Harvested from The Polish Digital Mathematics Library

We study coprime integer solutions to the equation a³ + b³ⁿ = c² using Galois representations and modular forms. This case represents perhaps the last natural family of generalized Fermat equations descended from spherical cases which is amenable to resolution using the so-called modular method. Our techniques involve an elaborate combination of ingredients, ranging from ℚ-curves and a delicate multi-Frey approach, to appeal to intricate image of inertia arguments.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279697
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-4-3,
     author = {Michael A. Bennett and Imin Chen and Sander R. Dahmen and Soroosh Yazdani},
     title = {On the equation a3 + b3n = c2},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {327-343},
     zbl = {1306.11025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-4-3}
}
Michael A. Bennett; Imin Chen; Sander R. Dahmen; Soroosh Yazdani. On the equation a³ + b³ⁿ = c². Acta Arithmetica, Tome 166 (2014) pp. 327-343. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-4-3/