It is known that two consecutive coefficients of a ternary cyclotomic polynomial differ by at most one. We characterize all k such that . We use this to prove that the number of nonzero coefficients of the nth ternary cyclotomic polynomial is greater than .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-3-2, author = {Bart\l omiej Bzd\k ega}, title = {Jumps of ternary cyclotomic coefficients}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {203-213}, zbl = {1307.11032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-3-2} }
Bartłomiej Bzdęga. Jumps of ternary cyclotomic coefficients. Acta Arithmetica, Tome 166 (2014) pp. 203-213. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-3-2/