Jumps of ternary cyclotomic coefficients
Bartłomiej Bzdęga
Acta Arithmetica, Tome 166 (2014), p. 203-213 / Harvested from The Polish Digital Mathematics Library

It is known that two consecutive coefficients of a ternary cyclotomic polynomial Φpqr(x)=kapqr(k)xk differ by at most one. We characterize all k such that |apqr(k)-apqr(k-1)|=1. We use this to prove that the number of nonzero coefficients of the nth ternary cyclotomic polynomial is greater than n1/3.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279067
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-3-2,
     author = {Bart\l omiej Bzd\k ega},
     title = {Jumps of ternary cyclotomic coefficients},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {203-213},
     zbl = {1307.11032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-3-2}
}
Bartłomiej Bzdęga. Jumps of ternary cyclotomic coefficients. Acta Arithmetica, Tome 166 (2014) pp. 203-213. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-3-2/