Factors of a perfect square
Tsz Ho Chan
Acta Arithmetica, Tome 166 (2014), p. 141-143 / Harvested from The Polish Digital Mathematics Library

We consider a conjecture of Erdős and Rosenfeld and a conjecture of Ruzsa when the number is a perfect square. In particular, we show that every perfect square n can have at most five divisors between n-n(logn)1/7 and n+n(logn)1/7.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279082
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-2-4,
     author = {Tsz Ho Chan},
     title = {Factors of a perfect square},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {141-143},
     zbl = {1300.11012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-2-4}
}
Tsz Ho Chan. Factors of a perfect square. Acta Arithmetica, Tome 166 (2014) pp. 141-143. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-2-4/