We consider a conjecture of Erdős and Rosenfeld and a conjecture of Ruzsa when the number is a perfect square. In particular, we show that every perfect square n can have at most five divisors between and .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-2-4, author = {Tsz Ho Chan}, title = {Factors of a perfect square}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {141-143}, zbl = {1300.11012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-2-4} }
Tsz Ho Chan. Factors of a perfect square. Acta Arithmetica, Tome 166 (2014) pp. 141-143. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-2-4/