The mantissa distribution of the primorial numbers
Bruno Massé ; Dominique Schneider
Acta Arithmetica, Tome 166 (2014), p. 45-58 / Harvested from The Polish Digital Mathematics Library

We show that the sequence of mantissas of the primorial numbers Pₙ, defined as the product of the first n prime numbers, is distributed following Benford's law. This is done by proving that the values of the first Chebyshev function at prime numbers are uniformly distributed modulo 1. We provide a convergence rate estimate. We also briefly treat some other sequences defined in the same way as Pₙ.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279327
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-1-4,
     author = {Bruno Mass\'e and Dominique Schneider},
     title = {The mantissa distribution of the primorial numbers},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {45-58},
     zbl = {1298.11074},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-1-4}
}
Bruno Massé; Dominique Schneider. The mantissa distribution of the primorial numbers. Acta Arithmetica, Tome 166 (2014) pp. 45-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-1-4/