Let k ∈ ℤ be such that , where . We determine all solutions to xyz = 1 and x + y + z = k in integers of number fields of degree at most four over ℚ.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-4-5, author = {H. G. Grundman and L. L. Hall-Seelig}, title = {Solutions to xyz = 1 and x+y+z = k in algebraic integers of small degree, I}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {381-392}, zbl = {06270724}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-4-5} }
H. G. Grundman; L. L. Hall-Seelig. Solutions to xyz = 1 and x+y+z = k in algebraic integers of small degree, I. Acta Arithmetica, Tome 166 (2014) pp. 381-392. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-4-5/