On the concentration of certain additive functions
Dimitris Koukoulopoulos
Acta Arithmetica, Tome 166 (2014), p. 223-241 / Harvested from The Polish Digital Mathematics Library

We study the concentration of the distribution of an additive function f when the sequence of prime values of f decays fast and has good spacing properties. In particular, we prove a conjecture by Erdős and Kátai on the concentration of f(n)=p|n(logp)-c when c > 1.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279079
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-3-2,
     author = {Dimitris Koukoulopoulos},
     title = {On the concentration of certain additive functions},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {223-241},
     zbl = {06264561},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-3-2}
}
Dimitris Koukoulopoulos. On the concentration of certain additive functions. Acta Arithmetica, Tome 166 (2014) pp. 223-241. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-3-2/