We study the concentration of the distribution of an additive function f when the sequence of prime values of f decays fast and has good spacing properties. In particular, we prove a conjecture by Erdős and Kátai on the concentration of when c > 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-3-2, author = {Dimitris Koukoulopoulos}, title = {On the concentration of certain additive functions}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {223-241}, zbl = {06264561}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-3-2} }
Dimitris Koukoulopoulos. On the concentration of certain additive functions. Acta Arithmetica, Tome 166 (2014) pp. 223-241. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-3-2/