A ternary Diophantine inequality over primes
Roger Baker ; Andreas Weingartner
Acta Arithmetica, Tome 166 (2014), p. 159-196 / Harvested from The Polish Digital Mathematics Library

Let 1 < c < 10/9. For large real numbers R > 0, and a small constant η > 0, the inequality |pc+pc+pc-R|<R-η holds for many prime triples. This improves work of Kumchev [Acta Arith. 89 (1999)].

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279105
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-2-3,
     author = {Roger Baker and Andreas Weingartner},
     title = {A ternary Diophantine inequality over primes},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {159-196},
     zbl = {1301.11040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-2-3}
}
Roger Baker; Andreas Weingartner. A ternary Diophantine inequality over primes. Acta Arithmetica, Tome 166 (2014) pp. 159-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-2-3/