On some mean value results for the zeta-function in short intervals
Aleksandar Ivić
Acta Arithmetica, Tome 166 (2014), p. 141-158 / Harvested from The Polish Digital Mathematics Library

Let Δ(x) denote the error term in the Dirichlet divisor problem, and let E(T) denote the error term in the asymptotic formula for the mean square of |ζ(1/2+it)|. If E*(t) := E(t) - 2πΔ*(t/(2π)) with Δ*(x) = -Δ(x) + 2Δ(2x) - 1/2Δ(4x) and 0TE*(t)dt=3/4πT+R(T), then we obtain a number of results involving the moments of |ζ(1/2+it)| in short intervals, by connecting them to the moments of E*(T) and R(T) in short intervals. Upper bounds and asymptotic formulae for integrals of the form ∫T2T(∫t-Ht+H |ζ(1/2+iu|2 duk dt(k,1HT)are also treated.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:279177
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-2-2,
     author = {Aleksandar Ivi\'c},
     title = {On some mean value results for the zeta-function in short intervals},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {141-158},
     zbl = {06256102},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-2-2}
}
Aleksandar Ivić. On some mean value results for the zeta-function in short intervals. Acta Arithmetica, Tome 166 (2014) pp. 141-158. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-2-2/