Let denote the error term in the Dirichlet divisor problem, and let E(T) denote the error term in the asymptotic formula for the mean square of |ζ(1/2+it)|. If E*(t) := E(t) - 2πΔ*(t/(2π)) with Δ*(x) = -Δ(x) + 2Δ(2x) - 1/2Δ(4x) and , then we obtain a number of results involving the moments of |ζ(1/2+it)| in short intervals, by connecting them to the moments of E*(T) and R(T) in short intervals. Upper bounds and asymptotic formulae for integrals of the form ∫T2T(∫t-Ht+H |ζ(1/2+iu|2 duk dtare also treated.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-2-2,
author = {Aleksandar Ivi\'c},
title = {On some mean value results for the zeta-function in short intervals},
journal = {Acta Arithmetica},
volume = {166},
year = {2014},
pages = {141-158},
zbl = {06256102},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-2-2}
}
Aleksandar Ivić. On some mean value results for the zeta-function in short intervals. Acta Arithmetica, Tome 166 (2014) pp. 141-158. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-2-2/