Let q > 2 be a prime power and , where . We prove that f is a permutation polynomial of if and only if one of the following occurs: (i) q is even and ; (ii) q ≡ 1 (mod 8) and t² = -2.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-1-3, author = {Xiang-dong Hou}, title = {A class of permutation trinomials over finite fields}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {51-64}, zbl = {1294.11210}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-1-3} }
Xiang-dong Hou. A class of permutation trinomials over finite fields. Acta Arithmetica, Tome 166 (2014) pp. 51-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-1-3/