A class of permutation trinomials over finite fields
Xiang-dong Hou
Acta Arithmetica, Tome 166 (2014), p. 51-64 / Harvested from The Polish Digital Mathematics Library

Let q > 2 be a prime power and f=-x+txq+x2q-1, where t*q. We prove that f is a permutation polynomial of q² if and only if one of the following occurs: (i) q is even and Trq/2(1/t)=0; (ii) q ≡ 1 (mod 8) and t² = -2.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:286516
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-1-3,
     author = {Xiang-dong Hou},
     title = {A class of permutation trinomials over finite fields},
     journal = {Acta Arithmetica},
     volume = {166},
     year = {2014},
     pages = {51-64},
     zbl = {1294.11210},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-1-3}
}
Xiang-dong Hou. A class of permutation trinomials over finite fields. Acta Arithmetica, Tome 166 (2014) pp. 51-64. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-1-3/