We prove a result on approximations to a real number θ by algebraic numbers of degree ≤ 2 in the case when we have certain information about the uniform Diophantine exponent ω̂ for the linear form x₀ + θx₁ + θ²x₂.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-1-2, author = {Nikolay Moshchevitin}, title = {A note on two linear forms}, journal = {Acta Arithmetica}, volume = {166}, year = {2014}, pages = {43-50}, zbl = {1285.11101}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-1-2} }
Nikolay Moshchevitin. A note on two linear forms. Acta Arithmetica, Tome 166 (2014) pp. 43-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-1-2/