We prove a result on approximations to a real number θ by algebraic numbers of degree ≤ 2 in the case when we have certain information about the uniform Diophantine exponent ω̂ for the linear form x₀ + θx₁ + θ²x₂.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-1-2,
author = {Nikolay Moshchevitin},
title = {A note on two linear forms},
journal = {Acta Arithmetica},
volume = {166},
year = {2014},
pages = {43-50},
zbl = {1285.11101},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-1-2}
}
Nikolay Moshchevitin. A note on two linear forms. Acta Arithmetica, Tome 166 (2014) pp. 43-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa162-1-2/