Diophantine equations with Euler polynomials
Dijana Kreso ; Csaba Rakaczki
Acta Arithmetica, Tome 161 (2013), p. 267-281 / Harvested from The Polish Digital Mathematics Library

We determine decomposition properties of Euler polynomials and using a strong result relating polynomial decomposition and diophantine equations in two separated variables, we characterize those g(x) ∈ ℚ [x] for which the diophantine equation -1k+2k-+(-1)xxk=g(y) with k ≥ 7 may have infinitely many integer solutions. Apart from the exceptional cases we list explicitly, the equation has only finitely many integer solutions.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279149
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-5,
     author = {Dijana Kreso and Csaba Rakaczki},
     title = {Diophantine equations with Euler polynomials},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {267-281},
     zbl = {06238629},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-5}
}
Dijana Kreso; Csaba Rakaczki. Diophantine equations with Euler polynomials. Acta Arithmetica, Tome 161 (2013) pp. 267-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-5/