We determine decomposition properties of Euler polynomials and using a strong result relating polynomial decomposition and diophantine equations in two separated variables, we characterize those g(x) ∈ ℚ [x] for which the diophantine equation with k ≥ 7 may have infinitely many integer solutions. Apart from the exceptional cases we list explicitly, the equation has only finitely many integer solutions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-5,
author = {Dijana Kreso and Csaba Rakaczki},
title = {Diophantine equations with Euler polynomials},
journal = {Acta Arithmetica},
volume = {161},
year = {2013},
pages = {267-281},
zbl = {06238629},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-5}
}
Dijana Kreso; Csaba Rakaczki. Diophantine equations with Euler polynomials. Acta Arithmetica, Tome 161 (2013) pp. 267-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-5/