We determine decomposition properties of Euler polynomials and using a strong result relating polynomial decomposition and diophantine equations in two separated variables, we characterize those g(x) ∈ ℚ [x] for which the diophantine equation with k ≥ 7 may have infinitely many integer solutions. Apart from the exceptional cases we list explicitly, the equation has only finitely many integer solutions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-5, author = {Dijana Kreso and Csaba Rakaczki}, title = {Diophantine equations with Euler polynomials}, journal = {Acta Arithmetica}, volume = {161}, year = {2013}, pages = {267-281}, zbl = {06238629}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-5} }
Dijana Kreso; Csaba Rakaczki. Diophantine equations with Euler polynomials. Acta Arithmetica, Tome 161 (2013) pp. 267-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-5/