Let be an algebraic family of Drinfeld modules defined over a field K of characteristic p, and let a,b ∈ K[λ]. Assume that neither a(λ) nor b(λ) is a torsion point for for all λ. If there exist infinitely many λ ∈ K̅ such that both a(λ) and b(λ) are torsion points for , then we show that for each λ ∈ K̅, a(λ) is torsion for if and only if b(λ) is torsion for . In the case a,b ∈ K, we prove in addition that a and b must be -linearly dependent.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-2, author = {Dragos Ghioca and Liang-Chung Hsia}, title = {Torsion points in families of Drinfeld modules}, journal = {Acta Arithmetica}, volume = {161}, year = {2013}, pages = {219-240}, zbl = {1306.11048}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-2} }
Dragos Ghioca; Liang-Chung Hsia. Torsion points in families of Drinfeld modules. Acta Arithmetica, Tome 161 (2013) pp. 219-240. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-2/