Let be an algebraic family of Drinfeld modules defined over a field K of characteristic p, and let a,b ∈ K[λ]. Assume that neither a(λ) nor b(λ) is a torsion point for for all λ. If there exist infinitely many λ ∈ K̅ such that both a(λ) and b(λ) are torsion points for , then we show that for each λ ∈ K̅, a(λ) is torsion for if and only if b(λ) is torsion for . In the case a,b ∈ K, we prove in addition that a and b must be -linearly dependent.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-2,
author = {Dragos Ghioca and Liang-Chung Hsia},
title = {Torsion points in families of Drinfeld modules},
journal = {Acta Arithmetica},
volume = {161},
year = {2013},
pages = {219-240},
zbl = {1306.11048},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-2}
}
Dragos Ghioca; Liang-Chung Hsia. Torsion points in families of Drinfeld modules. Acta Arithmetica, Tome 161 (2013) pp. 219-240. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-2/