Torsion points in families of Drinfeld modules
Dragos Ghioca ; Liang-Chung Hsia
Acta Arithmetica, Tome 161 (2013), p. 219-240 / Harvested from The Polish Digital Mathematics Library

Let Φλ be an algebraic family of Drinfeld modules defined over a field K of characteristic p, and let a,b ∈ K[λ]. Assume that neither a(λ) nor b(λ) is a torsion point for Φλ for all λ. If there exist infinitely many λ ∈ K̅ such that both a(λ) and b(λ) are torsion points for Φλ, then we show that for each λ ∈ K̅, a(λ) is torsion for Φλ if and only if b(λ) is torsion for Φλ. In the case a,b ∈ K, we prove in addition that a and b must be ̅p-linearly dependent.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279841
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-2,
     author = {Dragos Ghioca and Liang-Chung Hsia},
     title = {Torsion points in families of Drinfeld modules},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {219-240},
     zbl = {1306.11048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-2}
}
Dragos Ghioca; Liang-Chung Hsia. Torsion points in families of Drinfeld modules. Acta Arithmetica, Tome 161 (2013) pp. 219-240. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-3-2/