Multiplicative relations on binary recurrences
Florian Luca ; Volker Ziegler
Acta Arithmetica, Tome 161 (2013), p. 183-199 / Harvested from The Polish Digital Mathematics Library

Given a binary recurrence unn0, we consider the Diophantine equation un1x1unLxL=1 with nonnegative integer unknowns n1,...,nL, where ninj for 1 ≤ i < j ≤ L, max|xi|:1iLK, and K is a fixed parameter. We show that the above equation has only finitely many solutions and the largest one can be explicitly bounded. We demonstrate the strength of our method by completely solving a particular Diophantine equation of the above form.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279204
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-2-4,
     author = {Florian Luca and Volker Ziegler},
     title = {Multiplicative relations on binary recurrences},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {183-199},
     zbl = {1316.11012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-2-4}
}
Florian Luca; Volker Ziegler. Multiplicative relations on binary recurrences. Acta Arithmetica, Tome 161 (2013) pp. 183-199. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-2-4/