The n-level densities of low-lying zeros of quadratic Dirichlet L-functions
Jake Levinson ; Steven J. Miller
Acta Arithmetica, Tome 161 (2013), p. 145-182 / Harvested from The Polish Digital Mathematics Library

Previous work by Rubinstein and Gao computed the n-level densities for families of quadratic Dirichlet L-functions for test functions f̂₁, ..., f̂ₙ supported in i=1n|ui|<2, and showed agreement with random matrix theory predictions in this range for n ≤ 3 but only in a restricted range for larger n. We extend these results and show agreement for n ≤ 7, and reduce higher n to a Fourier transform identity. The proof involves adopting a new combinatorial perspective to convert all terms to a canonical form, which facilitates the comparison of the two sides.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279719
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-2-3,
     author = {Jake Levinson and Steven J. Miller},
     title = {The n-level densities of low-lying zeros of quadratic Dirichlet L-functions},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {145-182},
     zbl = {1288.11085},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-2-3}
}
Jake Levinson; Steven J. Miller. The n-level densities of low-lying zeros of quadratic Dirichlet L-functions. Acta Arithmetica, Tome 161 (2013) pp. 145-182. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-2-3/