On sets of polynomials whose difference set contains no squares
Thái Hoàng Lê ; Yu-Ru Liu
Acta Arithmetica, Tome 161 (2013), p. 127-143 / Harvested from The Polish Digital Mathematics Library

Let q[t] be the polynomial ring over the finite field q, and let N be the subset of q[t] containing all polynomials of degree strictly less than N. Define D(N) to be the maximal cardinality of a set AN for which A-A contains no squares of polynomials. By combining the polynomial Hardy-Littlewood circle method with the density increment technology developed by Pintz, Steiger and Szemerédi, we prove that D(N)qN(logN)7/N.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279659
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-2-2,
     author = {Th\'ai Ho\`ang L\^e and Yu-Ru Liu},
     title = {On sets of polynomials whose difference set contains no squares},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {127-143},
     zbl = {1294.11177},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-2-2}
}
Thái Hoàng Lê; Yu-Ru Liu. On sets of polynomials whose difference set contains no squares. Acta Arithmetica, Tome 161 (2013) pp. 127-143. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa161-2-2/