Propagation de la 2-birationalité
Claire Bourbon ; Jean-François Jaulent
Acta Arithmetica, Tome 161 (2013), p. 285-301 / Harvested from The Polish Digital Mathematics Library

Let L/K be a 2-birational CM-extension of a totally real 2-rational number field. We characterize in terms of tame ramification totally real 2-extensions K’/K such that the compositum L’=LK’ is still 2-birational. In case the 2-extension K’/K is linearly disjoint from the cyclotomic ℤ₂-extension Kc/K, we prove that K’/K is at most quadratic. Furthermore, we construct infinite towers of such 2-extensions.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279626
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-3-5,
     author = {Claire Bourbon and Jean-Fran\c cois Jaulent},
     title = {Propagation de la 2-birationalit\'e},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {285-301},
     zbl = {1287.11129},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-3-5}
}
Claire Bourbon; Jean-François Jaulent. Propagation de la 2-birationalité. Acta Arithmetica, Tome 161 (2013) pp. 285-301. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-3-5/